MAXIMUM REACH ENTERPRISES

1853 Wellington Court Henderson, NV 89014 Ph: 702 547 1564 kent.goodman @ cox.net www.maximumreach.com

16 April 2012

TOP HEAD LUG & TAIL LUG DESIGN FOR TOWER 2

In January of this year, I was contacted by Crane Service Inc., a Crane and Rigging Company, to design top head lugs for four vertical vessels that were in an old abandoned El Paso gas plant in Southern Utah. The lugs were needed in order to down end the vessels. See the file "Tower Height Estimates.pdf" for a photo of the old plant and the four vertical vessels. This design example is for Tower 2 as it was the heaviest. Note that Tower 2 is the second from the right hand side of the photo.

I agreed to design the lifting lugs and sent an email asking for the following information:

- 1. An outline drawing of each vessel showing the location of the CG would be good.
- 2. Height of each vessel from the basering to the top tangent line.
- 3. O. D. of each vessel just below the top tangent line.
- 4. Thickness of the shell just below the top tangent line. Could be obtained by drilling holes in the shell, using a "material identification device", or doing Ultrasonic Testing.
- 5. Documented weight of each vessel, either just the shell or dressed out with P&L/insulation/piping.
- 6. Type of head of each vessel. The General Welding document shows a 2:1 elliptical head for #3 vessel shown.
- 7. Type of shell material of each vessel just below the top tangent line. General Welding shows A-212 B for the # 3 vessel.
- 8. Close up photos of the top of each vessel and the basering & skirt of each vessel would be good. The photos should identify each vessel.

Comments:

- 1. CSI will be responsible for the crane study for each vessel.
- 2. CSI will be responsible for locating the top head lugs so they will not interfere with any nozzles or piping.
- 3. CSI will be responsible for the rigging hook up for each vessel.
- 4. CSI will be responsible for the tailing hook up for each vessel. A sample tailing hook up is attached. I recommend tailing down the vessels with a sling in a choker hitch, rather than connecting slings to the basering.
- 5. The vessels can be down ended dressed as they are with this method.

CSI replied that general arrangement drawings were not available, but they would hire an NDT company to do Ultrasonic testing to determine the shell thickness and would measure the vessel to provide the other measurements I required. See file "UT Report On Six Vessels.pdf", sheet 3 for the information for Tower 2. Be sure to look under the yellow sticky notes to see the hidden information, ie, the vessel circumference, the height, etc. CSI also sent a separate email showing that the head length, measured from top tangent line over

the head and down to the tangent line on the other side = 9.83'. This measurement was used to determine if the head was indeed a 2:1 semi-elliptical.

CSI also decided that they did not feel qualified to down end the three heavy vessels using a tail sling and asked me to design tail lugs for them. They also requested that the tail lugs be positioned above the bottom tangent line as they did not want to weld to the skirt. With this scope of work in mind, I then sent them a manhour estimate for all attachments:

SCOPE OF WORK: Manhour estimate

Design top head lugs 8 mh $*$ 4 vessels = 32							
Design tail lugs	4 mh *	3 vessels = 12					
Administrative	4 mh	= 4					
Total	mh	48					
Cost @ \$90/mh * 48	=	not to exceed \$4,320.00					

DRAWING INDEX:

A drawing index is always developed as the design of the lift attachments proceeds. It is usually sent to the field or client on a monthly basis, so they will know what drawings will be coming to them. But in this case with few designs, I filled it out per CSI's down ending schedule and sent it to them at the start of the first lug design.

MAXIMUM REACH ENTERPRISES DRAWING INDEX

CUSTOMER: Crane Service Inc. PROJECT: ANETH GAS PLANT

NUMBER	DRAWN BY	DESCRIPTION	REV.
CSI – 1601	KEG	Top Head Lug For Dehydration Vessel	1.00
1602	KEG	Top Head Lug For Tower 3	1.00
1603	KEG	Top Head Lug For Tower 2	1.00
1604	KEG	Top Head Lug For Tower 1	1.00
1605	KEG	Tail Lug For Tower 3	1.00
1606	KEG	Tail Lug For Tower 2	1.00
1607	KEG	Tail Lug For Tower 1	1.00

WEIGHT DETERMINATION:

With the above field measurements, I was able make what I felt was a conservative estimate of the weight of the vessel and the location of the CG. The steps and assumptions to do this were:

Vessel circumference = 24.5', Therefore the O.D. = C/Pi = 24.5/3.14 = 7.8' = 93.58''

Assumptions:

- 1. Use 1.68" thickness for the shell
- 2. Use 1.79" thickness for the head
- 3. From the shell weight table, sheet 6, used 96" O.D. and 1-5/8" thickness = 1,687 lbs./ft.
- 4. From the head weight table, sheet 7, used 96" O.D. and 1-7/8" thickness = 5,517 lbs/head Therefore, the vessel weight was:

Weight of the shell	= 76.83'*1,687 lbs./ft/ = 129,612 lbs.
Weight of the two heads	= 2*5,517 lbs. $= 11,034$
Subtotal	140,646
Add 25% for trays, piping, nozzles, basering, etc.	= 140.646*0.25 = 35,162
TOTAL	175,808
NOTE: When Tower 2 was lifted off the foundation, it w	reighed $160,000 === \Rightarrow Good$

As the location of the CG was unknown, I assumed that 60% of the weight was carried by the lifting lugs at the initial pick position (IPP), and 66% was carried by the tail slings.

Therefore:	The IPP load	= 175,808*0.6 = 105,485 lbs.
	The load/lug at IPP	= 105,485/2 = 52,743
	The load/lug at set	= 175.808/2 = 87.904
	The tail load	= 175.81k*47.33'/71.83' = 115.84 k
NOTES		

NOTES:

1. When Tower 2 was down ended and in the horizontal, the load to the tail crane was $92.00 \text{ k} == \Rightarrow \text{Good}$

- 2. See the Rigging Summary Sheet (RSS) on sheet 4 for the dimensions used to calculate the tail load. The RSS is sheet number 1 in most design calculations, and is the control document. If any information changes in the design, then the Rigging Engineer will update the RSS. It will not be sheet number 1 in this example due to the need to present the background of the lift first. It will be sheet number 4.
- 3. The location of the CG shown on the RSS was an educated estimate because for most vertical vessels, it is located about 40% of the distance from the bottom of the basering toward the lifting lugs.
- 4. The 7' shown on the RSS is the sum of the skirt height (6'-8") plus an estimate of 4" above the bottom tangent line where the tail lug will be located.

TOP HEAD LUG DESIGN

Calculating The Eccentricity Of The Lug:

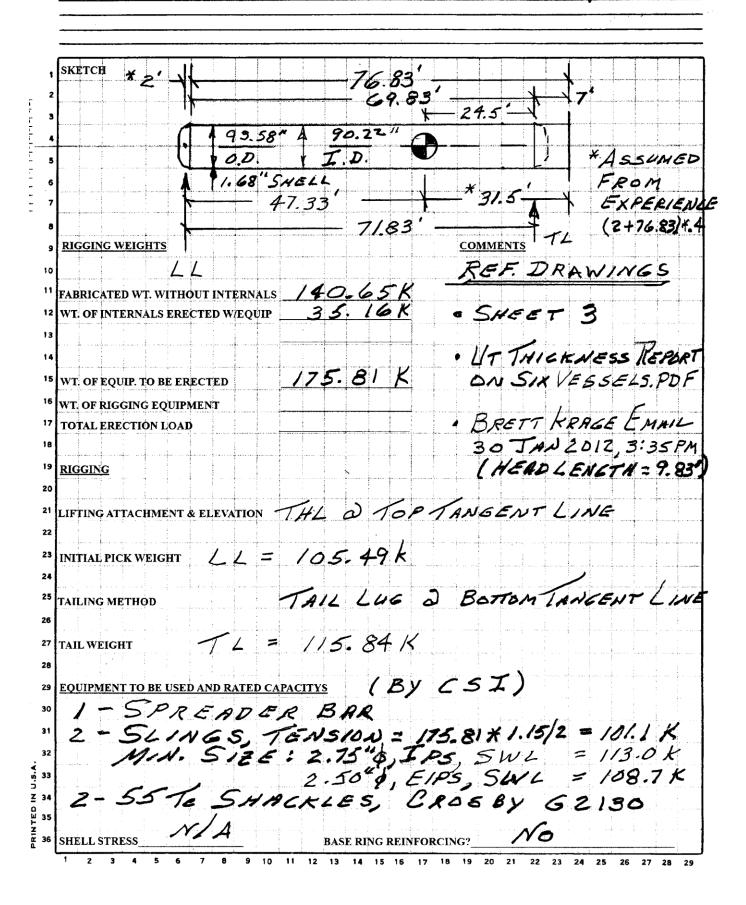
Sheet 5 shows the layout and formulas for calculating the 18" of eccentricity for the top head lug. Note that the 18" is not to scale. The distance is actually 17" but I increased it to 18" just to be conservative.

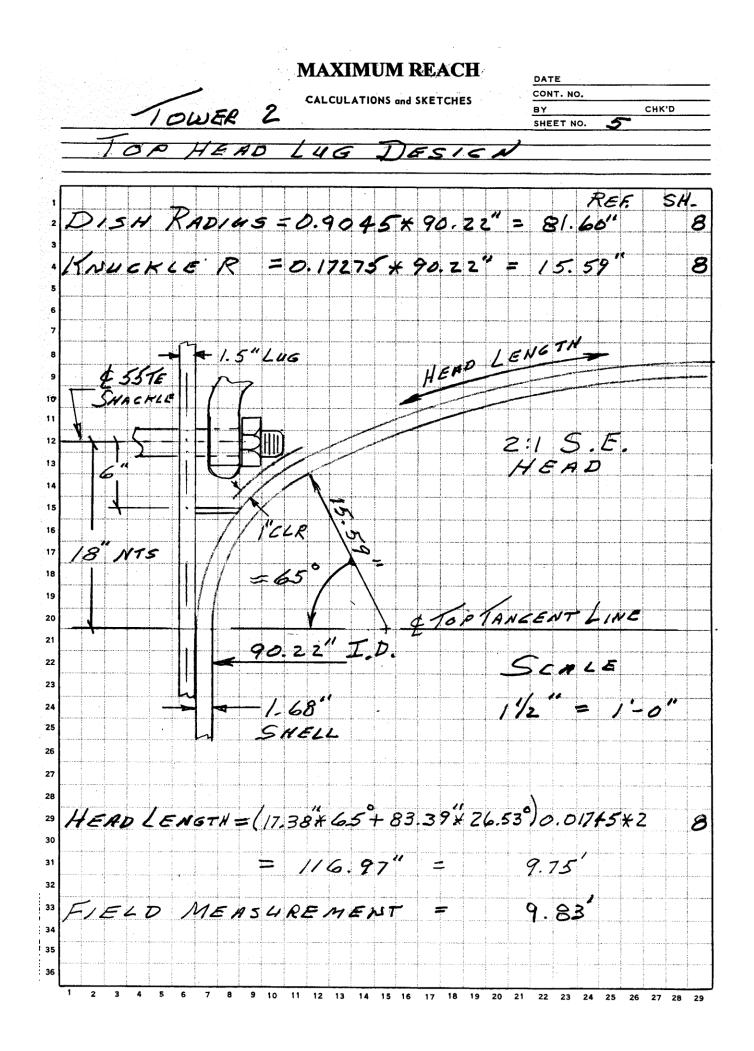
The maximum width of the top head lugs = $0.01745*O.R.*30^\circ = 0.01745*93.58"*30^\circ/2 = 24.49"$ This is based on the theory that any lug with a width of 30° or over must be designed using "curved plate design" which is a lot more complicated than using flat plate design.

Using The Plate Lug Program On My Website:

After the eccentricity had been determined, two runs were made using the plate lug program, one with the vessel in the horizontal (IPP) to determine maximum lug plate bending and minimum weld size and one with the vessel in the vertical (SET) to determine the end area required and bearing stress at the lug hole. See sheets 10 thru 13 respectively. See sheet 29 to see how I arrived at the dimensions for the top head lugs.

Top Head Lug Drawing:

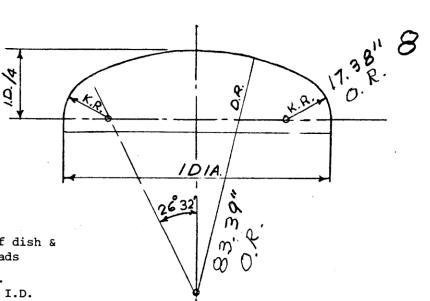

Sheet 14 shows the resulting top head lug drawing, "Approved For Fabrication".


The photos at the end of the top head lug design show the fabricated/installed top head lug and the rigging hook up.

MAXIMUM REACH

ER 2012 CONT. NO, 🗸 BXEGOODNANCHK'D SHEET NO. 4 0

CALCULATIONS and SKETCHES RIGGING SUMMARY SHEET FOR: Tower 2


3.0	CARBON	STEEL	VESSEL	WEIGHT	PER	LINEAR	FT.	OF	0.D.	SHELL

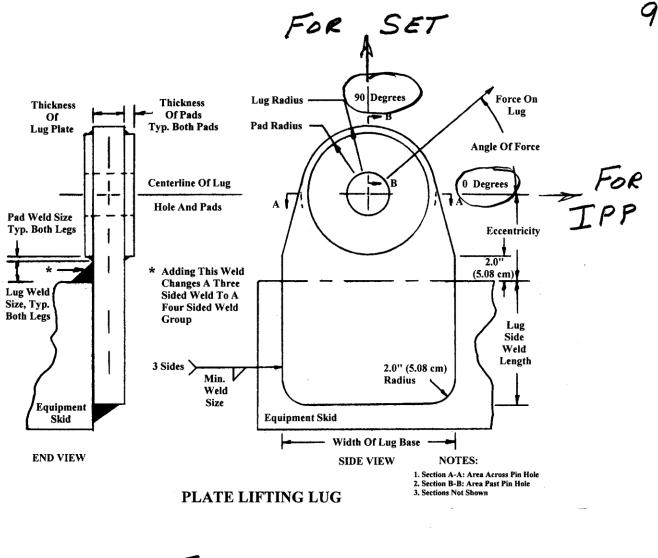
																							-	
																					\bigcap			
0.D.	1" ਰ	<u>_3</u> r 16	<u>1</u> "	$\frac{5''}{15}$	3"		1"	9" 10	5"	11" 10	2" 	<u>13</u> " 10	7"	<u>15</u> " 10	1"	$l\frac{1}{10}$	117	1 <u>1</u> "	1 <u>8</u>	$1\frac{1}{2}$	15	1 7 "	1 <u>7</u> "	2"
14"	21	30	4C	49	58	57	75	54	23	102	110	113	127	135	143	151	159	175	191	206	221	230	250	264
16"	24	35	45	56	56	77	87		107	117	125	136	146	156	165	175	194	203	221	239	257	274	291	_308
18"	26	39	51	63	75	86	66	110	121	152	143	154	165	177	197	198	209	230	252	272	293	313	333	352
20"	30	43	57	70	83	96	109	122	134	147	160	172	185	197	209	221	234	258	282	305	329	351	374	390
24"	35 .	52	69	84	100	116	131	147	162	178	193	208	223	239	253	268	283	313	342	371	400	428	456	484
30"	44	65	36	106	126	145	165	185	204	223	242	262	281	301	319	338	358	395	433	470	507	544	580	616
36"	53	78	103	127	151	175	198	223	245	269	292	315	339	303	305	408	432	478	524	569	615	659	704	748
42"	62	91	120	149	177	204	232	260	287	315	342	369	397	425	451	479	506	560	615	668	722	775	828	880
48"	71	104	137	170	202	234	265	298	329	361	391	423	455	488	517	549	581	643	705	767	829	890	951	1012
54"	80	113	154	191	228	263	299	3,36	370	406	441	477	513	550	583	619	655	725	796	865	937	1006	1075	1144
<u>60"</u>	89	131	172	213	253	293	332	374	412	452	491	531	571	612	649	689	729	808 800	387 079	966	1044	1121	1199	1276
<u>66"</u>	98	144	189	234	279	322	366	411	453	498	541	584	629 (0-	674	715	759	803	890 077	978	1065	1151	1237 1352	1323	1408 1549
72"	106	157	206	256	304	352	399	449	495	543	590	638	687	736	781	830	878	973 1055	1068 1159	1164 1263	1258 1366		1570	1549
	115	170	223	277	.330	382	433	487	537	589	640	692	745	791	847	500	952 1026		11250	1362	1473	1583	1694	1804
84*	124	183	240	298	355	411	466	525 540	578 620	635 681	690 770	746 800	803 861	861 923	913 979	1040		-		-	1580	1699	1818	1936
-90"	133	196	258	320	381 201	441 470	500	562 600	661	726	739 789	853	919	985	1045	1110		1303	1431	1560		1814	1942	2068
96" 102"	142	209 222	275 292	341 167	406 431	470 500	533 567	637	703	772	839	907	919	1047	1111	1180			1522	1659	1795	1930	2065	2200
102"	151 160			363 384	457	 529	600	675	745	813	888	961	1035	1110	1177		1324	1468	1613	1758	1902	2045	2189	2332
108"	160	235 249	309 326	405	482	559	634	713	786	863	938	1015	1093	1172	1243	1321	-	_	1704	1857	2009	2161	2313	2464
120"	109	249	344	427	508	588	667	750	828	909	988	1069	1151	1234	-	1391		1633	1794	1956	2116	2276	2437	2596
120"	186	275		448	534	617	700	787	868	954	1037	1122	1209	1294	1375				1985	2055	2222	2390	2558	2726
132"	195	288	378	470	559	647	734	826	911	1000	1087	1176	1267	1358	1441	1531	1621	1798	1976	2154	2331	2507	2684	2360
138*	204	301	396	490	584	ó76	767	862	951	1045	1136	1230	1325	1418	1507		1694	1880	2066	2253	2436	2621	2806	2990
144"	213	314	412	512	610	706	801	901	994	1092	1187	1284	1383	1483	1573			1963	2157	2352	2546	27,38	2932	3124
150"	222	327	4 30	533	635	736	834	938	1035	1138	1236	1339	1441	1543	1639	1741	1843	2046	2248	2451	2653	2854	3056	3257
156"	231	340	447	555	<u>ó</u> б1	765	868	976	1076	1183	1286	1392	1499	1605	1705	1811	1917	2128	2339	2550	2750	2970	3190	3309
162"	239	353	465	.576	686	795	901	1014	1118	1229	1335	1446	1557	1667	1771	1881	1991	2211	2430	2649	2867	3085	3303	3521
168"	248	366	482	598	712	824	935	1051	1159	1275	1385	1500	1615	1729	1837	1951	2066	2293	2521	2748	2975	3201	3427	3653
174"	257	380	499	619	737	3 54	968	1089	1291	1320	1435	1554	1673	1792	1903	2022	2140	2376	2611	2847	3082	3316	3551	3789
180*	266	393	516	640	763	883	1002	1127	1243	1366	1484	1608	1731	1854	1969	2092	2214	2458	2702	2946	3169	3432	3675	3917
186"	275	406	534	662	788	913	1035	1164	1284	1412	1534	1662	1789	1916	2035	2162	2288	2541	2793	3045	3296	354?	3799	4049
192"	284	419	551	683	814	942	1069	1202	1326	1458	1584	1715	1847	1979	2101	2232	2363	2623	2884	3144	3404	3663	-	4181
198*	293	432	568	704	679	972	1102	1240	1367	1503	1633	1769	1905	2040	2167	2302	2437	2706	2974	3243	3511	3778	4046	4313
204"	302	445	585	726	865	1001	1130	1277	1409	1549	1683	1823	1963			2372	2511	2783	3065	3342	3613	3894	4170	444
210"	310	458	602	747	890	1031	1169	1315	1450	1595	1733	1877	2021	21.64			2585	2871	3156	3441	3725	4009	4294	4577
216"	319	471	620	769	916	1060	1203	1353				1931	2079				2660	2953	3247	3540	3833	4125	4417	4709
222*	328	484	637	790	<u>941</u>	1090	1236	1390	1534	1686	1832	1985	2137	2288	2431	2583	2734	3036	3337	3639	3940	4240	4541	4941
228*	337	497	654	811	967	1119	1270	1428	1575	1732	1882	2038			2497	2653	2805	3118	3428	3738	4047	4356	4665	4973
234"	346	511	671	633	992	1149	1303	1466		1778	1932					2723	-	3201	3519	3837	4155	4472	4789	510
240"	355	524	689	854	1018	1179	1337	1503	1658	1823	1981	2146	2311	2475	2629	2793	2957	3283	3610	3936	4262	4587	4913	523
Weight 15./sq.ft	.5.65	8.34	10.97	13.61	16.22	18.79	21.32	23.98	26,46	29. 10	31.63	34.27	36.91	39.54	42.02	44.65	47.28	52.53	57.78	63.04	68.29	73.54	78.80	84.0
Incl. \$ Over Weight	10.75	9.00	7.50	6.75	6.00	5.25	4.50	4.50	3.75	3.75	3.38	3.38	3.38	3.38	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.0

6

															-										-7
I.D.	ţ	1" 8	<u>_3</u> " 10	1"	5° 16	3" 3	<u>7</u> " 15	<u>1</u> " 2	<u>9"</u> 16	5	11" 16	3 "	<u>13</u> " 16	7" 8	<u>15</u> " 16	1"	$\frac{1}{10}$	1 <u>1</u> "	1 <u>1</u> "	1 3 "	1 <u>1</u> "	1 <u>5</u> "	17	1 7 " 1 3	2"
14		7.7	12	16	30	24	28	32	37.	41	46	50	55	60	64	69	74	79	89	100	111	122	133) 145	157
16	5"	10	15	20	26	31	امز	42	47	53	59	63	71	77	83	53	95	101	114	128	141	155	10)	154	199
18	3=	13	19	26	32	39	46	53	60	67	74	81	89	96	103	111	119	126	142	159	175	192	210	228	24
20) "	16	24	32	40	48	56	65	73	82	91	99	108	117	126	135	145	154	174	193	213	233	254	276	297
24	¥*	22	- 34	45	57	68	- 30	92	104	116	129	141	154	166	179	192	205	218	245	272	. 300	<u>3</u> 2ř	356	386	412
	<u>, </u>	35	53	71	85	106	125	143	161	180	199	218	237	256	276	295	315	335	<i>3</i> 75	416	457	499	542	565	629
	5*	50	75	101	127	152	179	205	231	258	285	311	339	365	393	421	448	476	533	590	648	707	760	826	88
42		68 0-	103	138	172	207	242	277	313	349	386	421	458	494	532	568	605	643	719	795	872	950	1029	1109	1189
48		89	134	130	224	270 341	315	361	407	454	501	547	596	642	691	737	786	834	932	1030	_1129	1229	1330	1433	157
60		113 139	169 209	227 280	283 349	- 241 420	398 491	456 552	514 634	573 706	633 779	691 850	751 924	809 996	870 1071	929 1143	989 1217	1050 1291	1173 1442	1295 1591	1419 1743	1544 1895	1671 2050	1798 2205	1926 2361
66	_	168	252	339	422	507	593	579	765	852	941	1026	1116	1202	1292	1379	1468	1557	1738	1917	2099	2282	2050 2467	2653	2301
72	2"	200	300	403	502	603	705	807	910	1013	1118	1219	1325	1427	1534	1637	1742	1849	2062	2276	24.30	2705	2023	2017	336
75	3-	234	352	473	589	708	827	946	1066	1187	1310	1429	1552	1672	1797	1917	2040	2163	2414	26ó1	2912	3164	3412	3674	3931
84	4	272	408	543	682	820	958	1097	1235	1375	1517	1655	1798	1936	2060	2219	2361	2504	2793	3078	3368	3659	3952	4247	4543
9	2**	312	468	629	783	941	1099	1258	1417	1577	1740	1897	2061	2219	2384	2543	2706	2869	3200	3526	3 857	4190	4525	4861	519
9	5	355	533	715	890	1070	1250	1430	1611	1792	1978	2156	2342	2522	2709	2890	3074	3259	3635	4004	4 3 80	475?	5136	5517	5895
102	2"	400	601	807	1005	1207	1410	1613	1817	2022	2231	2432	2642	2844	3055	3258	34ó6	3675	4097	4513	4935	5359	5786	6214	6641
108	_	449	674	904	1126	1353	1580	1808	2036	2265	2499	2724	2959	3186	3422	3649	3882	4115	4587	5052	5524	5998	6474	6952	7433
111		500	751	1007	1254	1507	1760	2013	2267	2522	2782	3033	3295	3546	3809	4062	4320	4580	5104			6672	7201	7732	8266
120		554	832	1116	1789	1669	1949	2230	2511	2793	3081	3359	3648	3927	4217	4497	4783	5069	5650	6221	6801	7363	7967	3554	9141
120		611 670	917 1006	1230 1350	1531 1680	1839 2018	2148 2357	2457 2696	2767 3036	3078 3376	3395 3724	3701 4059	4019 4408	4326 4745	4646 5095	4954	5269 5778	5584 6124	6223 6823	6852 7512	7489 8211	8129 8912	8772	9417	10064
13		733	1100	1475	1836	2010	2575	2090	3317	3689	4069	4435	4816	5183	5566	5433 5934	6311	6688	7452	8204	8965	9730	9615 10407	10321 11267	· ·
14	-	798	1197	1606	1999	2401	2803	3207	3610	4015	4428	4826	5241	5641	6057	5458	6867	7277	8108	8925	9753	10584	11418	1225-	1309.
150		865	1299	1742	2169	2604	3041	3478	3916	4355	4603	5235	5684	6117	6568	7003	7447	7891	3791	9677	10574	11474	12377	13263	1
15		934	1405	1884	2345	2816	3288	3761	4235	4709	5193	5660	6146	6614	7101	7571	8050	8530			11428			14353	
162	2"	1009	1515	2031	2529	3037	3546	4055	4566	5077	5599	6101	6625	7129	7654	8150	8677	9194	10242	11272	12316	13362	14412	15465	16523
16	8™	1085	1629	2184	2719	3265	7812	4360	4909	5458	6019	6560	7122	7664	8228	8772	9327	9883	11008	12115	13236	14360	15438	16515	177=3
174	4*	1164	174?	2343	2916	3502	4089	4676	5264	5854	6455	7034	4638	8219	8823	9406	10001	10597	11803	12989	14190	15394	16602	17813	19025
180	2"	1246	1870	2507	3121	3747	4375	5003	5633	6263	6906	7526	8171	8792	9439	10062	10698			13893		16464		19049	1 -
180	_	1330	1996	2677	3332	4001	4671	5341	6013	6686	7372	8034	8722		10075		-	(14827		17570		20327	
19		1417	2127	2852	3550	4262	4975	5691	6406	7123	7854	8558	9291	9997	10732	11440	12163	12987	14352	15792	17250	13711	20177	21646	27114
196		1507	2262	3033	3775	4532	5291	6051	5812	7573	8351	9099	9679		11410	-	12931				18336	19889	21446	23006	
201		1600 1695	2401 2544	3219 3411	4007 4245	4811 5097	5616	6422 6805	7229 7660	8038	8863	9657	10484	11280	12109	12907	13722		16189		19456 20609	21102	22753	24408	1
210		1793	2544 2692	7608	4491	5392	5951 6295	0005 7198	7000 8102	8516 9008	9390 9932	10231 10822	11107	11951 12640	12828 13559	1,4463	14537	1.5401	17150	18869	20608 21794	22352	24100 25495	25852	2760 2014
222	_	1894	2843	3811	4744	5696	6649	7603	8558	9514		11429	A ALLON		14330		16237	17202		21072		24959	25909	25863	3082
225		1998	2999	4020	5003	6007	7012	8018	9025		1 -	12053	***				17122		20197			26316	23,371	30431	32495
23	_		3158	4234	5270	6327	7385	8445	9505	10567	11651	12694	1 3780	14826	15914	16961	18031	19102	21268	23397	25551	27709	29872	32040	1
240	0*	2214	3322	4454	5543	6655	7763	888 2	9998	11115	12254	13351	14493	15593	16737	17839	18963	20089	22367	24605	26869	291,38	31412	33691	35974
Weig 1b/sc		5.10	7.65	10.3	12.8	15.3	17.9	20.4	23.0	25.5	28.1	30.6	33.2	35.7	38.3	40.8	43.4	45.9	51.1	56.1	61.2	66.3	71.4	76.5	81.é

Note: 1. All weights are in 1b.

Corresponding radius of dish & corner for 2:1 S.E. heads


.

Dish: .9045 X I.D. Knuckle: .17275 X I.D.

.

I.D.	DISH (IN.)	KNUCKLE RADIUS (IN)
12	1078	2 ¹ /16
14	12 ¹¹ /16	2 ^{7⁄} 16
16	14 2	234
18	16 ¹ /4	3 ¹ /8
20	18 ¹ 16	3 ⁷ /16
22	19 ⁷ ⁄8	3 ¹³ 16
24	21 ¹¹ /16	4 ¹ /8
_28	25 ⁵ 16	4 ¹³ 16
30	27 ¹ 8	4 ³ 16
32	28 ¹⁵ 16	5 ¹ 2
36	32 ⁹ 16	6 ¹ ⁄4
40	36 ³ 16	6 ¹⁵ /16
42	38	71/4
48	43 ⁷ 16	8 ⁵ 16
54	48 ¹³ 16	9 ⁵ 16
60	54 ¹ 4	1038
66	59 ¹¹ /16	1138
72	65 ¹ /8	12716

I.D.	DISH (IN.)	KNUCKLE RADIUS (IN
78	70 ⁹ 16	13 ¹ /2
84	76	14 ¹ /2
90	8138	15 ⁹ 16
96	86 ¹³ 16	16 ⁹ /16
102	92 ¹ ⁄4	1758
108	97 ¹¹ /16	18 ¹¹ 16
114	103 ¹ ⁄8	19 ¹¹ 16
120	108 ⁹ 16	20 ³ 4
126	113 ¹⁵ 16	2134
132	119 ³ 8	22 ¹³ 16
138	124 ¹³ 16	23 ¹³ 16
144	130 ¹ 4	24 7/8
150	135 ¹¹ /16	25 ¹⁵ 16
156	141 ¹ /8	26 ¹⁵ 16
162	146 2	28
168	151 ¹⁵ 16	29
174	157 ³ /8	30 ¹ 16
180	162 ¹³ 16	31 ¹ 16

FOR REF. ONLY

PROGRAM TO DESIGN A PLATE TYPE LIFTING LUG v.02

COMPA ITEM N			JECT: Aneth Gas Plant	10
Crosby G213	30x55 ▼		the lookup table based on the force on t on to enter your own shackle and lug dat	-
4.13	in	Shackle Inside Width at Pin		
5.69	in	Shackle Eye Diameter		
2.80	in	Shackle Pin Diameter		
2.93	in	Lug Pin Hole Diameter	Recommend hole be 0.13 " or > than sh pin dia.	ackle
5.00	in	Lug Radius		
1.50	in	Lug Plate Thickness		
20.00	in	Lug Plate Width at Base	Minimum value of 2*radius of lug	
14.00	in	Lug Side weld length	Recommend using min. 0.7 * lug plate	width
.50	in	Lug Pad Thickness	Input zero if pads are not required	
4.50	in	Lug Pad Radius	Input zero if pads are not required	
18.00	in	Lug Eccentricity		
52.74	kips	Force on the Lug		
0.00	deg	Angle of the Force on the Lug	Measured from the horizontal	
36.00	ksi	Yield Stress of the Lug Material	Fy	
14.85	kips/in	Allowable Force on the Weld	Use 10.91 for LH60 or 14.85 for LH70	
1.80		Impact factor, IF	Recommend that a minimum 1.8 impact be used	t factor

OUTPUT:

Checking combined stress of the lug plate

30.00	in^2	Area of Lug Plate at Base	
100.00	in^3	Section modulus of the lug plate at the base	
17.09	ksi	Bending stress of the lug plate fb, actual	
0.00	ksi	Tension stress of the lug plate ft, actual	
21.60	ksi	Allowable bending and tension stress, Fb & Ft	
0.79		Combined stress of the lug plate. Must be less than 1.0	GOOD

Checking the lug weld size for a THREE sided weld, with the weld treated as a line

48.00	in Area of the weld //
3.27	kips/in Horizontal component of twist
3.25	kips/in Vertical component of twist
0.00	kips/in Tension force on the weld
1.10	kips/in Shearing force on the weld
5.44	
0.66	kips/in Resultant Force on the weld in Minimum weld size GOOD USE /
Checki	ing the lug weld size for a FOUR sided weld, with the weld treated as a line
68.00	in Area of the weld
2.01	kips/in Horizontal component of twist
1.41	kips/in Vertical component of twist
0.00	kips/in Tension force on the weld
0.78	kips/in-Shearing forse on the weld
2.97	kips/in Resultant Force on the weld
0.36	in Minimum weld size
Checki	ng bearing at the pin hole
22.60	ksi Bearing stress of the lug without pads MAX. a SET
13.56	ksi Bearing stress with pads attached GOOD
32.40	ksi Allowable bearing stress
10.55	kips Load per pad
0.07	in Pad weld size, min. $L/5E'/4''$
Checki	ng end area of the lug across the pin hole
5.86	in ² End area required across the pin hole
4.59	in Maximum effective lug radius. Used to calculate the max. allowable end area
11.72	in^2 Maximum effective end area $G \circ \circ D$
Checki	ng end area of the lug past the pin hole
3.91	in ² Area required past the pin hole $MAX. $ SET
8 34	in^2 Actual and area

- 8.34 in^2 Actual end area
- ^{7.72} in^2 Maximum allowable end area

Calculated by www.maximumreach.com

4/13/2012

GOOD

PROGRAM TO DESIGN A PLATE TYPE LIFTING LUG v.02

	NUMBE		
Crosby G	2130x55 🔻	r	n the lookup table based on the force on the lug ton to enter your own shackle and lug data.
4.13	in	Shackle Inside Width at Pi	n
5.69	in	Shackle Eye Diameter	
2.80	in	Shackle Pin Diameter	
2.93	in	Lug Pin Hole Diameter	Recommend hole be 0.13 " or > than shackle pin dia.
5.00	in	Lug Radius	
1.50	in	Lug Plate Thickness	
20.00	in	Lug Plate Width at Base	Minimum value of 2*radius of lug
14.00	in	Lug Side weld length	Recommend using min. 0.7 * lug plate width
.50	in	Lug Pad Thickness	Input zero if pads are not required
4.50	in	Lug Pad Radius	Input zero if pads are not required
18.00	in	Lug Eccentricity	
87.90	kips	Force on the Lug	
90.00	deg	Angle of the Force on the Lug	Measured from the horizontal
36.00	ksi	Yield Stress of the Lug Material	Fy
14.85	kips/ii	Allowable Force on the Weld	Use 10.91 for LH60 or 14.85 for LH70
1.80		Impact factor, IF	Recommend that a minimum 1.8 impact factor be used

OUTPUT:

Checking combined stress of the lug plate

30.00	in^2	2 Area of Lug Plate at Base		
100.00	in^3	B Section modulus of the lug plate at the base		
0.00	ksi	Bending stress of the lug plate fb, actual		
5.27	ksi	Tension stress of the lug plate ft, actual		
21.60	ksi	Allowable bending and tension stress, Fb & Ft	h.st	TOD
0.24		Combined stress of the lug plate. Must be less than 1.0	ĮMAX.	OTHE

Checking the lug weld size for a THREE sided weld, with the weld treated as a line

- 48.00 in Area of the weld
- 0.00 kips/in Horizontal component of twist
- 0.00 kips/in Vertical component of twist
- 1.83 kips/in Tension force on the weld
- 0.00 kips/in Shearing force on the weld
- 1.83 kips/in Resultant Force on the weld
- 0.22 in Minimum weld size

Checking the lug weld size for a FOUR sided weld, with the weld treated as a line

- in Area of the weld
- 0.00 kips/in Horizontal component of twist
- 0.00 kips/in-Vertical component of twist
- 1.29 kips/in Tension force on the weld
- 0.00 kips/in Shearing force on the weld
- 1.29 kips/in Resultant Force on the weld
- in Minimum weld size

Checking bearing at the pin hole

- 37.67 ksi Bearing stress of the lug without pads
- ksi Bearing stress with pads attached
- 32.40 ksi Allowable bearing stress
- 17.58 kips Load per pad
- 0.12 in Pad weld size, min.

Checking end area of the lug across the pin hole

- 9.77 in^2 End area required across the pin hole
- in Maximum effective lug radius. Used to calculate the max. allowable end area
- in^2 Maximum effective end area

Checking end area of the lug past the pin hole

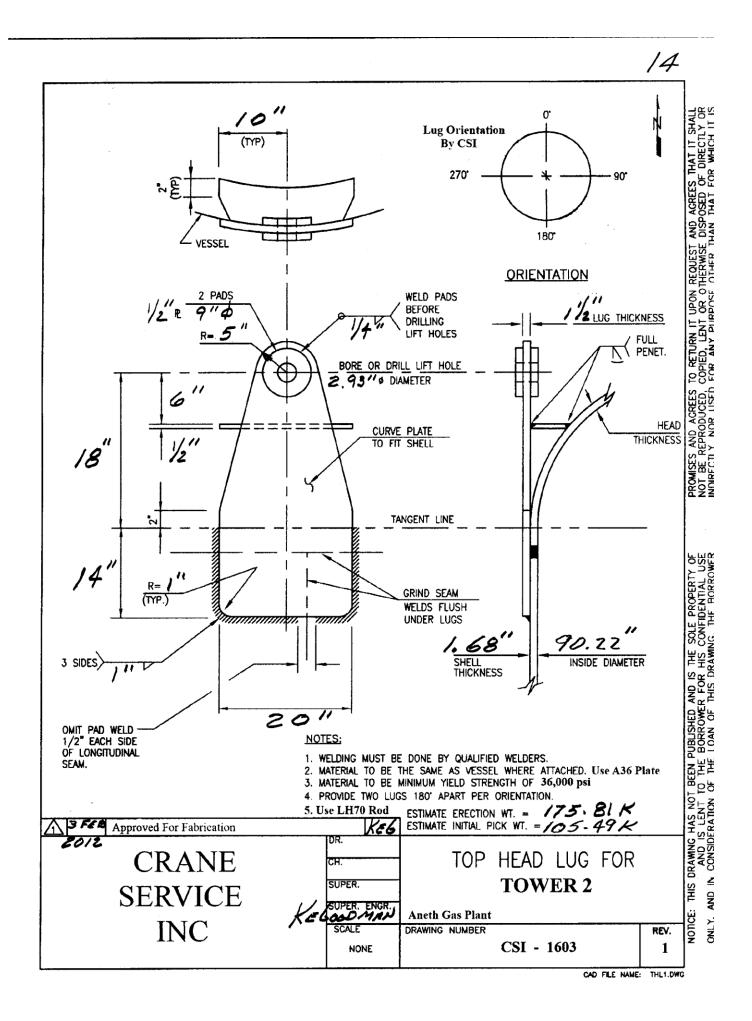
- 6.51 in^2 Area required past the pin hole
- 8.34 in^2 Actual end area

7.72 in^2 Maximum allowable end area

GOOD

GOOD

GOOD


115E 1/4" WELD

MAX. @ IPP

Calculated by www.maximumreach.com

4/13/2012

13

TAIL LUG DESIGN

Reference:	Top Head Lug Design, RSS on sheet 4 where:
	The tail load ≈ 116 kips
	Off set length = $93.58^{\circ}/2 + 5^{\circ}$ btm lug to hole = $51.8^{\circ} = 4.34^{\circ}$
	Other vessel dimensions required for running the up ending program
Steps:	

		Ref. Sheet
1.	Run the up ending program to determine the lift angle for max. forces for combined stress	17
1.	Run the pad eye program to determine the lug end area & bearing stress with the vessel	
	In the horizontal	18
3.	Run the L shaped tail lug program to determine the combined stress on the lug plate & weld	19
4.	Run the safe working load program for the tail sling	21
5.	Clearance between the bail of the 85 Te shackle & the lug plate	21
	= 14.85° - 5.5° = 9.35° . Plenty of clearance for a doubled 2.5" EIPS sling	
6.	Make a lug drawing "Approved For Fabrication"	22

The photos at the end of the tail lug design show the fabricated and installed tail lug, the tailing hook up and the down ending of tower 2.

PROGRAM FOR UPENDING FORCES v0.1

COMPANY: Crane Service Inc.I

PROJECT: Aneth Gas Plant Tail Lug Tower 2

Note: Forces are in kips and lengths are in feet

- 176.00 Total weight of vessel including trays, insulation, piping, etc
- 71.83 Total length from lift point to tailing point
- 24.50 Lower length from the CG to the tailing point

4.34 Offset length from the centerline of the vessel to the tailing point

OUTPUT:

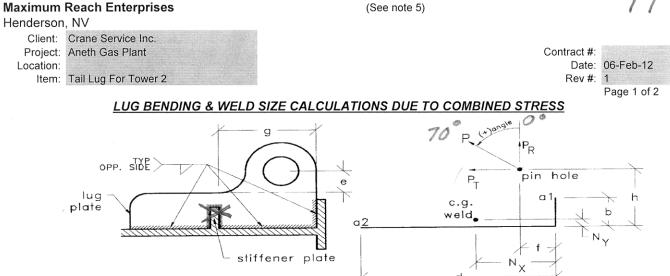
			Lift	Tail	Tail	Tail	Span
Angle	Load		Load	Load	Load	Load	
(deg)		Tranverse	Longitudinal		Tranverse	Longitudinal	
0.00	60.03	60.03	0.00	115.97	115.97	0.00	71.83
5.00	60.64	60.41	5.29	115.36	114.92	10.05	71.93
10.00	61.25	60.32	10.64	114.75	113.00	19.93	71.49
15.00	61.88	59.77	16.02	114.12	110.23	29.54	70.51
20.00	62.53	58.76	21.39	113.47	106.63	38.81	68.98
25.00	63.21	57.29	26.71	112.79	102.22	47.67	66.93
30.00	63.94	55.37	31.97	112.06	97.05	56.03	64.38
35.00	64.74	53.03	37.13	111.26	91.14	63.82	61.33
40.00	65.63	50.27	42.18	110.37	84.55	70.95	57.81
45.00	66.64	47.12	47.12	109.36	77.33	77.33	53.86
50.00	67.82	43.59	51.95	108.18	69.54	82.87	49.50
55.00	69.24	39.72	56.72	106.76	61.23	87.45	44.76
60.00	71.02	35.51	61.50	104.98	52.49	90.92	39.67
65.00	73.33	30.99	66.46	102.67	43.39	93.05	34.29
70.00	78.54	26.18	71.93	99.46	34.02	93.46	28.65
75.00	81.37	21.06	78.60	94.63	24.49	91.41	22.78
80.00	89.63	15.56	88.27	86.37	15.00	85.06	16.75
85.00	107.40	9.36	107.00	68.60	5.98	68.34	10.58
86.00	113.79	7.94	113.51	62.21	4.34	62.06	9.34
87.00	122.13	6.39	121.97	53.87	2.82	53.79	8.09
88.00	133.52	4.66	133.44	42.48	1.48	42.45	6.84
89.00	150.01	2.62	149.98	25.99	0.45	25.99	5.59
90.00	176.00	0.00	176.00	0.00	0.00	0.00	4.34
^{alcula}	ated by	www.maxi	mumreach co			2/6/2012	

Calculated by www.maximumreach.com

2/6/2012

PROGRAM TO DESIGN A PAD EYE TYPE LIFTING LUG v.02

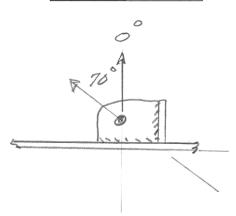
100 in Shackle Isside Widh at Pin 103 in Shackle Eye Diameter 103 in Shackle Eye Diameter 104 in Lug Rhit 105 in Lug Rhit 106 in Lug Rhit 107 in Lug Plate Thickness 108 in Lug Path Thickness 109 in Lug Path Roles 100 in Lug Path Roles 108 in Stackle Fin Diameter 109 in Lug Path Roles 100 in Lug Path Roles 100 in Lug Path Roles 100 fibro Stack of the Lug Material Fy 445 kips/in Allowable Force on the Lug 100 Impact factor, IF Recommend that a minimum 1.8 impact factor be used 00 Impact factor, IF Recommend that a minimum 1.8 impact factor be used 107 Exection modulus of the lug plate at the base in '3 Zecto in mo	Crosby G213	x85 🔻	Select a metric shackle from the	e lookup table based on the force on the lug or click the SHACKLE button to enter your own
136 in Shackle Eye Diameter 1/16 Å 137 in Lug Pin Hole Diameter Recommend hole be 0.13" or > than shackle pin dia. 1/16 Å 136 in Lug Pin Hole Diameter Recommend hole be 0.13" or > than shackle pin dia. 90° 136 in Lug Plate Thickness Input zero if pads are not required 90° 136 in Lug Pad Thickness Input zero if pads are not required 90° 136 in Lug Pad Thickness Input zero if pads are not required 90° 136 in Lug Pad Thickness Input zero if pads are not required 90° 136 in Lug Pad Thickness Input zero if pads are not required 90° 1360 in Lug Pad Thickness Input zero if pads are not required 90° 1360 in Lug Pad Thickness Input zero if pads are not required 90° 1360 in Lug Pad Thickness Input zero if pads are not required 90° 1360 Kips Force on the Lug Material Ey Kips Cara are 90° 1372 Section modulus of the lug plate at the base Kis N/A	-			
 in Lug Radius in Lug Plate Thickness in Lug Plate Thickness in Lug Pad Thickness Input zero if pads are not required in Lug Pad Thickness Input zero if pads are not required in Lug Pad Thickness Input zero if pads are not required in Lug Eccentricity in Lug Material Fy in Kipsi Allowable Force on the Lug Measured from the horizontal in Pade factor, IF Recommend that a minimum 1.8 impact factor be used UTPUT: There in Section modulus of the lug plate 1 , actual <i>N/A SEE 5 L SHAPEED NELLP Network Network</i> <th></th> <th></th> <th></th> <th></th>				
 in Lug Radius in Lug Plate Thickness in Lug Plate Thickness in Lug Pad Thickness Input zero if pads are not required in Lug Pad Thickness Input zero if pads are not required in Lug Pad Thickness Input zero if pads are not required in Lug Eccentricity in Lug Material Fy in Kipsi Allowable Force on the Lug Measured from the horizontal in Pade factor, IF Recommend that a minimum 1.8 impact factor be used UTPUT: There in Section modulus of the lug plate 1 , actual <i>N/A SEE 5 L SHAPEED NELLP Network Network</i> <td>-</td> <td></td> <td>-</td> <td> 16<i>K</i></td>	-		-	16 <i>K</i>
 in Lug Radius in Lug Plate Thickness in Lug Plate Thickness in Lug Pad Thickness Input zero if pads are not required in Lug Pad Thickness Input zero if pads are not required in Lug Pad Thickness Input zero if pads are not required in Lug Eccentricity in Lug Material Fy in Kipsi Allowable Force on the Lug Measured from the horizontal in Pade factor, IF Recommend that a minimum 1.8 impact factor be used UTPUT: There in Section modulus of the lug plate 1 , actual <i>N/A SEE 5 L SHAPEED NELLP Network Network</i> <td>3.43</td> <td></td> <td></td> <td>Recommend hole be 0.13° or > than shackle pin dia.</td>	3.43			Recommend hole be 0.13° or > than shackle pin dia.
50 in Lug Plate Thickness 100 in Lug Plate Thickness Input zero if pads are not required 100 in Lug Pad Radius Input zero if pads are not required 100 in Lug Pad Radius Input zero if pads are not required 100 in Lug Eccentricity 100 in Lug Eccentricity 100 deg Angle of the Force on the Lug Measured from the horizontal 100 ksi Spin Allowable Force on the Weld Use 10.91 for LH60 or 14.85 for LH70 100 inpact factor, IF Recommend that a minimum 1.8 impact factor be used VUTPUT: Phecking combined stress of the lug plate the base in*2 Area of Lug Plate at Base 100 ksi Irenion stress, Fb & Ft Combined stress of the lug plate ft, actual 100 ksi Holing and tension stress, Fb & Ft Combined stress of the lug plate. Must be less than 1.0 100 ksi Jalowable bending and tension stress, Fb & Ft Combined stress of the lug plate. Must be less than 1.0 100 ksi Jalowable base aring stress M/A SEEE "L" SHAPED WELD 101 in Area of the weld M/A SEE	5.50			90
100 in Lug Plate Width at Base Minimum value of 2*radius of lug 100 in Lug Pad Thickness Input zero if pads are not required 100 in Lug Pad Thickness Input zero if pads are not required 100 in Lug Pad Thickness Input zero if pads are not required 100 in Lug Pad Radius Input zero if pads are not required 100 in Lug Pad Radius Input zero if pads are not required 100 in Lug Pad Thickness Input zero if pads are not required 100 in Lug Pad Thickness Input zero if pads are not required 100 in Lug Pad Thickness Input zero if pads are not required 100 in Lug Pad Thickness Input zero if pads are not required 100 kis Yield Stress of the Lug Material Fy 435 kips/in Allowable Force on the Weld Use 10.91 for LH60 or 14.85 for LH70 100 in Aze of the lug plate at Base Kis Beding and tension stress, Fb & Ft 100 ksi Beding and tension stress, Fb & Ft Combined stress of the lug plate. Must be less than 1.0 100 fin Area of the we	2.50		•	X
in Lug Pad Thickness Input zero if pads are not required in Lug Ecentricity in Lug Ecentricity in Lug Matrial FS in Lug Matrial FS in Lug Matrial FS in Angle of the Force on the Lug Measured from the horizontal in Kips/in Allowable Force on the Weld Use 10.91 for LH60 or 14.85 for LH70 in Right are soft factor, IF Recommend that a minimum 1.8 impact factor be used PUTPUT: Area of Lug Plate at Base N/A SEEE 'L' SHAPED WELE in*3 Section modulus of the lug plate ft, actual N/A SEEE 'L' SHAPED WELE in*3 Section modulus of the lug plate th, actual N/A SEEE 'L' SHAPED WELE in*3 Section modulus of the ug late. Must be less than 1.0 Hocking weld size, with the weld treated as a line in*2 Combined stress of the lug plate. Must be less than 1.0 hocking the lug weld size, with the weld N/A SEEE 'L' SHAPEED WELD in*2 Section modulus of the weld N/A SEEE 'L' SHAPEED WELD in*3 Result ant Force on the weld N/A SEEE 'L' SHAPEED WELD in*4 Kips/in Asultant Force on the weld N	1.00		-	Minimum value of 2*radius of lug
in Lug Pad Radius Input zero if pads are not required in Lug Eccentricity is:0 kips in Lug Baterial Fy is: Yield Stress of the Lug Material Fy is: mpact factor, IF Recommend that a minimum 1.8 impact factor be used VLTPUT: theteking combined stress of the lug plate fo, actual i: n'3 Section modulus of the lug plate fo, actual i: n'3 Section modulus of the lug plate fo, actual i: i: Area of the weld treated as a line i: combined stress of the lug plate. Must be less than 1.0 theeking the lug weld size, with the weld treated as a line in''' i: i: Area of the weld	.00		•	-
in Lug Eccentricity iso deg iso deg angle of the Force on the Lug Measured from the horizontal iso deg ksi Yield Stress of the Lug Material Fy iso deg iso Impact factor, IF Recommend that a minimum 1.8 impact factor be used VUTPUT: hecking combined stress of the lug plate 10, actual iso ksi iso field blat iso statistics iso field blat iso field blat iso field blat iso field blat iso combined stress of the lug plate ft, actual iso ksi combined stress of the lug plate ft, actual N/A iso Combined stress of the lug plate ft, actual iso combined stress of the lug plate ft, actual N/A iso combined stress of the lug plate ft, actual N/A iso combined stress of the lug plate ft, actual N/A iso combined stress of the lug actual stress ft iso	0.00		v	
1860 kips Force on the Lug 000 deg Angle of the Force on the Lug Measured from the horizontal 000 ksi Yield Stress of the Lug Material Fy 445 kips/in Allowable Force on the Weld Use 10.91 for LH60 or 14.85 for LH70 80 Impact factor, IF Recommend that a minimum 1.8 impact factor be used Area of Lug Plate at Base 0 0.42 in*3 Section modulus of the lug plate fb, actual N/A SEE 5 2 SHAPED WELD 80 ksi Bending stress of the lug plate fb, actual N/A SEE 5 2 SHAPED WELD 80 ksi Allowable bending and tension stress, Fb & Ft 0 Combined stress of the lug plate. Must be less than 1.0 hecking the lug with the weld treated as a line 200 in Area of the weld N/A SEE 5 2 SHAPED WELD 31 in Area of the weld N/A SEE 5 2 SHAPED WELD PROCA mon 320 in Area of the weld N/A SEE 5 2 SHAPED WELD PROCA mon 33 in*2 Section modulus of the weld N/A SEE 6 2 SHAPED WELD PROCA Ram 331 kis Bearing stress of the lug	.00	in	-	ϕ
deg Angle of the Force on the Lug Measured from the horizontal 600 ksi Yield Stress of the Lug Material Py 488 kips/in Allowable Force on the Weld Use 10.91 for LH60 or 14.85 for LH70 80 Impact factor, IF Recommend that a minimum 1.8 impact factor be used VITPUT: thecking combined stress of the lug plate 750 in^2 Area of Lug Plate at Base 0.42 in^3 Section modulus of the lug plate th, actual N/A SEE C 1 SHAPED WELD 759 ksi Tension stress of the lug plate th, actual N/A SEE L 2 750 ksi Allowable bending and tension stress, Fb & Ft Section modulus of the weld treated as a line 750 in Area of the weld M/A SEE L 2 SHAPED WELD 751 in Area of the weld M/A SEE L 2 SHAPED WELD 753 combined stress of the lug plate. Must be less than 1.0 SHAPED WELD PROGRAPM 752 in Area of the weld M/A SEE L 2 SHAPED WELD 753 com modulus of the weld M/A SEE L 2 SHAPED WELD 703 in Area of the weld <t< td=""><td>16.00</td><td></td><td>•</td><td></td></t<>	16.00		•	
600 ksi Yield Stress of the Lug Material Fy 485 kips/in Allowable Force on the Weld Use 10.91 for LH60 or 14.85 for LH70 80 Impact factor, IF Recommend that a minimum 1.8 impact factor be used VTPUT: hecking combined stress of the lug plate 70 in*2 Area of Lug Plate at Base 602 in*3 Section modulus of the lug plate th, actual N/A SEEE*C*SHAPEED WELE 70 in*2 Area of Lug Plate at Base N/A SEE*C*SHAPEED WELE 70 in*2 Area of Lug Plate at Base N/A SEE*C*SHAPEED WELE 70 in*2 Area of Lug Plate at Base N/A SEE*C*SHAPEED WELE 70 in*2 Area of the ug plate th, actual N/A SEE*C*SHAPEED WELE 71 a Area of the ug plate. Must be less than 1.0 Hecking bearing stress of the lug plate. Must be less than 1.0 72 in Area of the weld M/A SEE L" SHAPEED WELD 72 in Minimum weld size Hecking bearing at the pin hole Sisters FROG RAPM 73 in Minimum weld size GOOD Kis Bearing stress of	0.00		ę	Measured from the horizontal
445 kips/in Allowable Force on the Weld Use 10.91 for LH60 or 14.85 for LH70 80 Impact factor, IF Recommend that a minimum 1.8 impact factor be used Section modulus of the lug plate at the base 602 in 73 Section modulus of the lug plate at the base 602 in 73 Section modulus of the lug plate ft, actual N/A 505 ksi Tension stress of the lug plate ft, actual N/A 506 ksi Tension stress of the lug plate ft, actual N/A 507 ksi Allowable bending and tension stress, Fb & Ft 508 ksi Combined stress of the weld treated as a line 200 in Area of the weld M/A SEE 503 in ^2 Section modulus of the weld M/A SEE 503 in Minimum weld size PROGRAPH 514 kips loaning stress with pads attached Section produce 529 kips Load per pad Section pade PROGRAPH 531 ksi Bearing stress with pads attached Section pade PROGRAPH 531 ksi Bearing stress of the lug without pads Socio D Sectio P 531 ksi Bearing stress of t	6.00			
a0 Impact factor, IF Recommend that a minimum 1.8 impact factor be used DUTPUT: in^2 Area of Lug Plate at Base in^3 Section modulus of the lug plate the base iso ksi Bending stress of the lug plate th, actual N/A SEEG 'L' SHAPED WELD iso ksi Tension stress, Fb & Ft N/A SEEG 'L' SHAPED WELD iso combined stress of the lug plate ft, actual N/A SEEG 'L' SHAPED WELD iso combined stress of the lug plate ft, actual N/A SEEG 'L' SHAPED WELD iso combined stress of the lug plate ft, actual N/A SEEG 'L' SHAPED WELD iso combined stress of the weld treated as a line PROGAMON in^2 Section modulus of the weld M/A SEEG 'L' SHAPED WELD in^2 section modulus of the weld M/A SEEG 'L' SHAPED WELD in*2 section modulus of the weld M/A SEEG 'L' SHAPED WELD in*2 in*2 section modulus of the weld M/A SEEG 'L' SHAPED WELD iso in*2 section modulus of the weld M/A SEEG 'L' SHAPED WELD iso in*2 section modulus of the weld M/A SEEG 'L' SHAPED WELD <td>4.85</td> <td></td> <td>-</td> <td>•</td>	4.85		-	•
WITPUT: Thecking combined stress of the lug plate 1072 in^2 Area of Lug Plate at Base 1072 in^3 Section modulus of the lug plate at the base 1072 in^3 Section modulus of the lug plate at the base 1072 ksi Bending stress of the lug plate ft, actual N/A SEE LSAPED WELP 108 ksi Allowable bending and tension stress, Fb & Ft Combined stress of the lug plate. Must be less than 1.0 Checking the lug weld size, with the weld treated as a line 200 in Area of the weld M/A SEE LSAPED WELD 103 in'2 Section modulus of the weld M/A SEE "L" SHAPED WELD 103 in'2 Section modulus of the weld M/A SEE "L" SHAPED WELD 103 in'2 Section modulus of the weld M/A SEE "L" SHAPED WELD 103 in'2 Section modulus of the weld M/A SEE "L" SHAPED WELD 103 in'2 Section modulus of the weld M/A SEE "L" SHAPED WELD 103 in'2 Section modulus of the weld M/A SEE "L" SHAPED WELD 104 kips/in Resultant Force on the weld M/A SEE "L" SHAPED WELD 103 in'2 Section modulus of the weld M/A SEE "L" SHAPED WELD 104 kips/in Resultant Force on the weld SEE "L" SHAPED WELD	.80			Recommend that a minimum 1.8 impact factor be used
in Maximum effective lug radius. Used to calculate the max. allowable end area in ² Maximum effective end area concerned area of the lug past the pin hole in ² A rea required past the pin hole	59 11.60 3.35 2.00 0.33 1.49 1.64 2.hecking 5.31 1.00 2.40 0.00	ksi T ksi A C the lu in in^2 kips/ii in bearin ksi B ksi B ksi B ksi A kips L in P end a	Tension stress of the lug plate ft, a Allowable bending and tension stress combined stress of the lug plate. If g weld size, with the weld treat Area of the weld Section modulus of the weld n Resultant Force on the weld Minimum weld size ng at the pin hole Bearing stress of the lug without p Bearing stress with pads attached Allowable bearing stress coad per pad ad weld size, min. rea of the lug across the pin hole	ed as a line NA SEE "L" SHAPED WELD PROGRAM bads 6000
3.72 in^2 Maximum effective end area Checking end area of the lug past the pin hole 59 in^2 A rea required past the pin hole	2.89	in^2 E	End area required across the pin h	ole
The ching end area of the lug past the pin hole $\frac{1}{2}$.37	in N	Maximum effective lug radius. Us	sed to calculate the max. allowable end area
The ching end area of the lug past the pin hole $\frac{59}{100}$ in 2 Area required past the pin hole				G000
¹⁵⁹ in ² Area required past the pin hole ⁴⁶ in ² Actual end area SOOP	hecking	end a	rea of the lug past the pin hole	
$\frac{16}{10^{-2}}$ in 2 Actual end area 600	.59	in^2 A	Area required past the pin hole	
	.46	in^2 A	Actual end area	6002


Calculated by www.maximumreach.com 2/6/2012

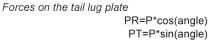
AREA & BEARING

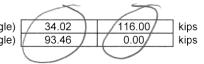
L SHAPED TAIL LUG PLATE AND WELD DESIGN (See note 5)

d


NOTES:

- 1. Fill in data in shaded fields.
- 2. Analysis based on Omer Blodgett's calculations for an "L" shaped weld, dated 24 Mar 99.
- 3. This calculation does not take in to account the weld between the stiffener plate/ring and the lug plate.
- 4. The calculated fillet weld size is typical for each side and both ends of the lug.
- 5. Lug end area must be designed by the Top Head Lug design program or one of the lug programs on www.maximumreach.com.


INPUT:


	<u>TRIAL #1</u>	<u>TRIAL #2</u>	_
Load, P	99.46	116.00	kips
Angle	70.00	0.00	degrees
Recommend 1.8 min. I.F.	1.80	1.80	
Electrode	E70	E70	
Allow. force on weld	14.85	14.85	kips/in.
Base ring ext. past skirt b	10.50	10.50	in.
OAL of the weld d	11.00	11.00	in.
Arm for lug bending e	5.00	5.00	in.
Radius of lug f	5.50	5.50	in.
Length of lug for bending g	11.00	11.00	in.
CL of lug hole to shell h	5.00	5.00	in.
Thickness of Lug, t	2.50	2.50	in.
Lug Material, SA-	A36	A36	
Yield Stress, Fy	36	36	ksi

REFERENCE	(Allow. Force)
E60 electrode	12.73 kips/in.
E70 electrode	14.85 kips/in.

OUTPUT FOR TAIL LUG PLATE:

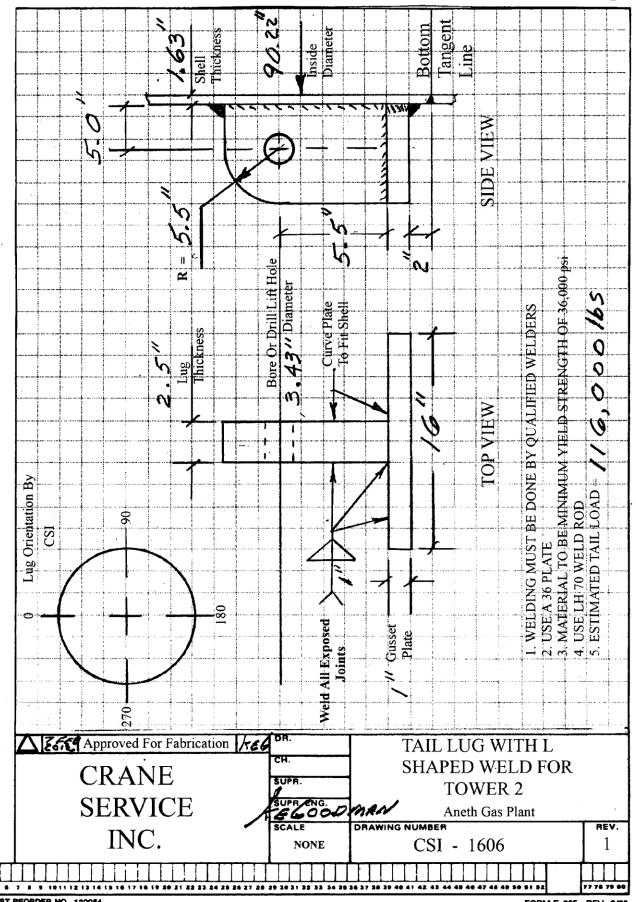
(Continued)

						Page 2 of 2
Find Properties Of Lug	01.0	01.0	7			
Bending Allowable, Fb=0.6Fy	21.6	21.6	ksi			20
Tension Allowable, Ft=0.6Fy	21.6	21.6	ksi			Course Course
A=t*g S=t*g^2/6	27.50 50.42	27.50	sq. in.			
5-t g ⁻² /6 [50.42	50.42	cu. in.			
fb=PT*e*I.F./S	16.68	0.00	ksi	< Fb		
Bending Stress:	0.K.	0.00 0.K.		10		
			_			
ft=PR*I.F./A	2.23	7.59	ksi	< Ft		
Tension Stress:	0.K.	0.K.			- A - T	7
fb/Fb+ft/Ft<=1	0.88	0.35	7	< 1.0	6001	
Combined Stress In Lug Plate:	0.K.	0.K.	_		,	
OUTPUT FOR WELD:						
Find Properties Of Weld Treated As A Line						
About the X-X axis (vertical axis)		1				
Nx = d(t+d)/2(t+d+b)	3.09	3.09	lin.			
$Ix = td^{2}+t^{3}/6+2d^{3}/3-d^{2}(t+d)^{2}/2(t+d+b)$	733.02	733.02	cu. in.			
About the Y-Y axis (horizontal axis)						
Ny = b(b+t)/2(t+d+b)	2.84	2.84]in.			
ly=2b^3/3+t*b^2+t^3/6-b^2(b+t)^2/2(t+d+b)	661.81	661.81	cu. in.			
Total weld length Lw = $2^*d + 2^*b + 2^*t$	48.00	48.00	lin.			
S = Ix + Iy	1394.82	1394.82	cu. in.			
	1334.02	1004.02				
Find Various Forces On Weld						
Torsion T = PT*(h-Ny)+PR*(Nx-f)	119.67	-279.13	kip-in.			
At point a2	113.07	-273.13				
fth = T* (d-Nx)/S	0.68	-1.58	kips/in.			
$ftv = T^*Ny/S$	0.24	-0.57	kips/in.			
fh = PR/Lw	0.71	2.42	kips/in.			
fv = PT/Lw	1.95	0.00	kips/in.			
fr = SQRT((ftv-fv)+(fth-fh)^2)	1.70	4.04	kips/in.			
At point a1			·			
fth=T*Nx/S	0.27	-0.62	kips/in.			
ftv=T*(b-Ny)/S	0.66	-1.53	kips/in.			
fh=PR/Lw	0.71	2.42	kips/in.			
fv=PT/Lw	1.95	0.00	kips/in.			
fr=SQRT((ftv+fv)^2+(fth+fh)^2)	2.78	2.36	kips/in.			
Governing Point:	a1	a2				
	Governs	Governs				
Find Fillet Wold Size Required						
Find Fillet Weld Size Required MIN. WELD SIZE w = I.F.*fr/allowable force [0.34	0.49]in.	(m)	OD.	
RECOMMENDED WELD SIZE	1	1	in.	Coc		
	•	•		U56		
			4	0	- · · · · · · · · · · · · · · · · · · ·	and good
	-	n E	SP	16	mBING	
DESIEN	2000	pr Co	and a second	6	-	
		,		and the second	AND A LOCAL AND A	S
	OP	14	Contraction of the local division of the loc	and have been and the second	Mar a Con	σ
STRESS F	Come price	Sentine Ser.		8. 33m		
\sim		- 7	000506070			
L SHAPE	united and and a second	12266	-			
5191916	Salesand					
Anatomic Management						

SAFE WORKING LOAD OF A SLING v0.2

ITEM N	UMBER: Tail Sling For Tower 2	
116.00	Maximum Tension in the sling or total tension	n for all parts of the sling
EIPS 2.50	in 120.80 Kip 👻 SELECT: Wire Rope type, diameter	er and SWL @ 100% Efficiency
2.00	Number of parts being used, ie two parts for a	a doubled sling
90.00	Effeciency factor of the swaged fitting at the	eye of a IWRC sling (%)
	1" diameter and smaller 95.0%	
	1-1/8" diameter thru 1-7/8" 92.5%	
_	2" diameter and larger 90.0%	
6.00 🛪	Diameter of the hook or "Other type of pin"	Enter zero if not applicable
0.00	Diameter of the curved plate of the spreader b	bar Enter zero if not applicable
0.00	Diameter of the trunnion	Enter zero if not applicable
0.00	Diameter of the shackle pin or sheave	Enter zero if not applicable

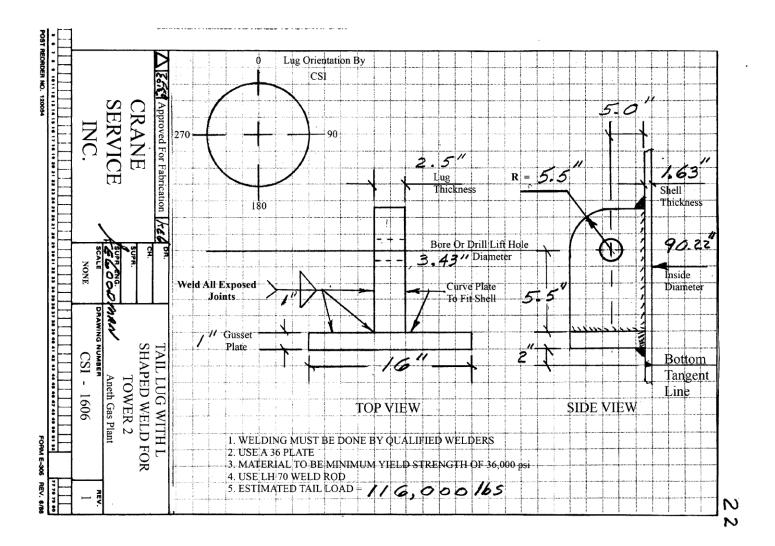
OUTPUT:


- Hook or "Other type of pin"/sling ratio
- 0.00 Curved plate/sling ratio
- 0.00 Trunnion/sling ratio
- 0.00 Shackle Pin or sheave/sling ratio
- Efficiency factor of the sling over a hook or "other type of pin" (%)
- 0.00 Efficiency factor of the sling around the curved plate (%)
- 0.00 Efficiency factor of the sling around the trunnion (%)
- 0.00 Efficiency factor of the sling around a shackle pin or sheave (%)
- 163.62 Safe Working Load of the sling using the smallest efficiency factor GOOD

47.62 Reserve capacity of the **sling** above the maximum tension

Calculated by www.maximumreach.com

"\$ HOOK 6 2/6/2012 TAIL LUG SHALKLE


21

22


OST REORDER NO. 120054

FORM E-305 REV. 6/88

ATTACHMENTS:

Tower Height Estimates.pdf

UT Thickness Report For Six Vessels.pdf

L Shaped Tail Lug And Weld.xls

The above pdf reference files and xls program will be sent upon request.

COMMENTS:

ANGLE OF FORCE ON LUGS:

Some of you may feel that there is a contradiction between the **angles of force** on the lugs used in the plate lug program and the tail lug program, ie, for L Shaped Lugs & Welds. My intention was to relate these angles of force to the **lift angle** of the vessel.

Plate or Pad Eye Lugs:

With the vessel in the horizontal at 0° lift angle, ie, in the IPP, the top head lugs are laying down and the angle of force on the lugs is vertical, ie, transverse to the longitudinal centerline of the lugs and the vessel. Therefore, I used the convention that the angle of force on the lugs in this position is 0° . When the lift angle is 90° , then the vessel is set and the angle of force on the lugs is 90° . As the lift angle increases, the angle of force on the lugs increases at the same rate. Maximum values for lug plate bending and weld size occur at 0° . Maximum values for end area and bearing stress occur at 90° .

If plate lugs or pad eye lugs are used to lift say a lubrication skid where the force to the lugs is vertical, then the above angle of force convention is still good, ie, the lugs are being used with the longitudinal centerline in the vertical so the angle of force at set is at 90°. There is not rotation of the load. This means that bending and the weld do not have to be checked at 0°. They are a maximum at 90°. But if the lift slings come off the lifting lugs at say 60°, then a run would have to be made for this angle to check the bending in the lug plate and the weld. This run would also automatically check the lug end area and bearing for 90°.

L Shaped Tail Lug And Weld

With the vessel at IPP, the force on the tail lug is vertical, so I used 0° for this angle of force. As the lift angle increases, the angle of force on the tail lug increases at the same rate. Maximum values for end area, bearing and weld size occur at 0° . The maximum value for lug plate bending occurs at somewhere around 65°, ie, in our example it occurred at 70°.

On page 18, I used the pad eye program to calculate the required end area and the bearing for the tail lug, so notice that I used 90° as the angle of force and the full 116 k of tail load. I did this because maximum values occur when the angle of force is in line with the longitudinal centerline of the lug, ie, 90° for a plate lug or a pad eye lug. I could have used the plate lug program and got the same results.

Also note on sheet 18 that the weld required was 0.64", but the weld required from the L Shaped Lug program was 0.49". That is because in the pad eye program, only the base weld length of 11" was used, and did not include the 10.5" of side weld.

TOP HEAD LUG DIMENSIONS:

I did not end up with the dimensions for the top head lug for Tower 2 simply by selecting a 55 Te shackle in the plate lug program and then using the values shown. It is not that simple. The dimensions shown in the program are for a very compact lug with a short eccentricity of 4.5". The eccentricity for most top head lugs is between 13" and 30" to provide clearance for the shackle, insulation, etc. So the dimensions shown are just a starting place, and the Rigging Engineer has to play around with the dimensions until he has a lug plate that provides the correct eccentricity, enough bending strength, weld length & size, enough end area and low bearing.

Shown below are two sheets that provide guidelines for selecting top head lugs. The user still has to tailor the shown dimensions to fit his purpose.

Note that I selected lug "3 C" from the guideline sheet, but that I still had to change some of the dimensions to get it to fit my design.

	THIS D. HELD NELD		4/2	+7		TT TO NO MEN						ALC GN	ATION AL SN CLOCK NORTH	WALES KWISE		Ť
			₩		5	VESSEL									10.	コフ
		-		PPV		LD PAOS				E SCHEIXILL E PAD SIZE					_04	NENTATIO
		R	K	1	BORE O	R DRILL	LIFT A	IN F	ſſ			ITEM	12 : VESSI		PACT DA	74
]		110	*		HEDLKE				15 CR	LL PENET.	EST. EK	ECTION			
		U		-					44//	\mathbf{X}		LUG TH	<i>K.</i>			
			7====	====1		Augus	d =0			/\	ELD THE.	DIM.	3			
	2	Sind		/	F	CURVE FIJ SH			$\ /\mathcal{A}$				g			
		/							Ц//	K.R.		WELD 5				
	_	6			<u> </u>	AUGEN	T LINE				\geq	ALDS	00. 17			
		·				-							WELD DIA.	Þ		
	2			1		CIZINO - S FLUSH U						ORIENT	LTION			
		ISES VERTICAL -				N.	s soes		1	•		MATER	AL			
		WE OF SELA		(-			SHELL T	··K 1.1	2		NOTE				
				HEAD	LUG	ρεγ	XIL					1. P2DVI 2. WELD	We g LUC	SE DOVE	ITEM 183°A BY QUALIFIE	PLET PER OZH D WELDERS
		TOTAL			1	1	-	1	1	1	1	<u>.</u>			LIFT	LUG
YPE .		ERECTION WEIGHT (TONS)	SHACKLE SIZE (TONS)	LUG THICKNES	A	В	c	E	R	w	GUSSET THICKNES	s	PADS	r	HOLE DIA.	MATL. MIN.YIELD
		(10113)	(10143)	L	L	L	L	<u> </u>		<u> </u>		O. D.	THK.	Ρ.		(PSI)
-A	<u> </u>	0-30	35		12	36' 12	<u>to</u>	48" I1 13	nside Di 3	ameter 3/8	1/2	1	1		2-1/2	30,000
-B		31-65	50	1-1/2	14	12	8	14	4	3/4	1/2	7	3/8	1/4	3	30,000
-C	*1	66-100	50	1-3/4	16	14 54'	9 to	15 72" Tr	4-1/2 nside Di	1 ameter	3/4	8	1/2	1/4	3	30,000
2-A		0-30	35	1	12	12	7	15	3	3/8	1/2	1	T	[2-1/2	30,000
2-B		31-65	50	1-1/2	16	14	.8	17	4	5/8	1/2	7	3/8	1/4	3	30,000
2-C	*1	66-100	50	1-3/4	18	14	9	18	4-1/2	7/8	1/2	8	1/2	1/4	3	30,000
-D	*2	101-150	75	2	20	16 78'	11 ' to	20 208" 1	5 Inside D	1-1/4 iameter	3/4	9	3/4	3/8	3-1/2	38,000
3-A		0-30	35	1	14	10	6	18	3	1/2	1/2				2-3/8	30,000
3-B		31-65	50	1	20	12	7	19	4	5/8	1/2	7	3/8	1/4	2-7/8	30,000
3-C 3-D	*1 *2	66-100	50 75	1-1/4	22 22	14 16	9 10	21 23	4-1/2 5	3/4	3/4	8	3/4	1/2 3/8	2-7/8 3-3/8	30,000
3-Е	*3	151-200	130	2	22	18	12	25	6-1/2	1-3/8	1	12		$\frac{3/8}{1/2}$	<u>3-3/8</u> <u>4-3/8</u>	38,000
						71		T	Inside D				1			
4-A		0-30 31-65	35 50	1	14 22	10 14	5	20	3.	$\frac{1/2}{1/2}$	1/2 1/2	7	3/8	1/4	2-3/8 2-7/8	30,000
4-R I	*1	66-100	50	1-1/4	22	14	9	22	4-1/2	3/4	3/4	8	3/8	$\frac{1/4}{1/4}$	2-7/8	30,000
4-в 4-с				1-3/4	26	16	12	27	5	1-1/4	1	9	1	3/8	3-3/8	38,000
-C	*2	101-150	75				12	27	6-1/2	1-3/8	1	12	1	1/2	4-3/8	38,000
-C -D		101-150 151-200	130	2	28	18										30,000
-C -D -E	*2	151-200	130	2	·····	150	' to	180" 1	Inside D	iameter	1/2	T	,		0.010	
-C -D -E	*2	151-200 0-30	130 35	2	14	150 10	' to . 5	180" 1	Inside D 3	iameter 1/2	1/2	7	3/8	1/4	2-3/8	30,000
I-C I-D I-E	*2 *3	151-200 0-30 31-65	130 35 50	2 1 1	14 22	150 10 14	' to	180" 1	Inside D 3 4	iameter 1/2 5/8	1/2	7	3/8	1/4	2-7/8	30,000 30,000
1-C 1-D 1-E 5-A 5-B 5-C	*2 *3	151-200 0-30	130 35	2	14	150 10	to 5 6	180" 1 21 23	Inside D 3	iameter 1/2		7 8 9	3/8 3/4 1	1/4 1/4 3/8		30,000
-C -D -E -A 5-B 5-C 5-D	*2 *3 *1	151-200 0-30 31-65 66-100	130 35 50 50	2 1 1 1-1/4	14 22 26	150 [°] 10 14 14 16 18	to 5 6 10 12 12	180" 1 21 23 28 30 30	Inside D 3 4 4-1/2 5 6-1/2	iameter 1/2 5/8 3/4 1-1/4 1-3/8	1/2 3/4	8	3/4	1/4	2-7/8 2-7/8	30,000 30,000 30,000
I-C I-D I-E S-A S-B S-C S-D S-E	*2 *3 *1 *2	151-200 0-30 31-65 66-100 101-150 151-200	130 35 50 50 75 130	2 1 1-1/4 1-3/4 2	14 22 26 26 28	150' 10 14 14 16 18 186"	to 5 6 10 12 12 to 2	21 23 28 30 30 16" In	Inside D 3 4 4-1/2 5 6-1/2 nside Di	iameter 1/2 5/8 3/4 1-1/4 1-3/8 ameter	1/2 3/4 1 1-3/8	8	3/4 1	1/4 3/8	2-7/8 2-7/8 3-3/8 4-3/8	30,000 30,000 30,000 38,000 38,000
4-C 4-D 4-E 5-A 5-B 5-C 5-D 5-E 5-E	*2 *3 *1 *2	151-200 0-30 31-65 66-100 101-150 151-200 0-30	130 35 50 50 75 130 35	2 1 1-1/4 1-3/4 2 1	14 22 26 26 28 16	150 [°] 10 14 14 16 18 186" 10	to 5 6 10 12 12 to 2 4	180" 1 21 23 28 30 30 16" Ir 24	Inside D 3 4 4-1/2 5 6-1/2 nside Di 3	iameter 1/2 5/8 3/4 1-1/4 1-3/8 ameter 1/2	1/2 3/4 1 1-3/8	8 9 12	3/4 1 1	1/4 3/8 1/2	2-7/8 2-7/8 3-3/8 4-3/8 2-3/8	30,000 30,000 38,000 38,000 38,000 30,000
4-C 4-D 4-E 5-A 5-B 5-C 5-D 5-E 5-E	*2 *3 *1 *2 *3	151-200 0-30 31-65 66-100 101-150 151-200 0-30 31-65	130 35 50 75 130 35 50	2 1 1-1/4 1-3/4 2 1 1	14 22 26 26 28 16 24	150' 10 14 14 16 18 186" 10 14	' to 5 6 10 12 12 to 2 4 6	180" 1 21 23 28 30 30 16" In 24 26	Inside D 3 4 4-1/2 5 6-1/2 nside Di 3 4	iameter 1/2 5/8 3/4 1-1/4 1-3/8 ameter 1/2 1/2	1/2 3/4 1 1-3/8 1/2 1/2	8 9 12 7	3/4 1 1 3/8	1/4 3/8 1/2	2-7/8 2-7/8 3-3/8 4-3/8 2-3/8 2-3/8 2-7/8	30,000 30,000 38,000 38,000 38,000 30,000 30,000
4-C 4-D 4-E 5-A 5-B 5-C 5-C 5-E 5-A 5-B 5-C	*2 *3 *1 *2 *3	151-200 0-30 31-65 66-100 101-150 151-200 0-30	130 35 50 50 75 130 35	2 1 1-1/4 1-3/4 2 1	14 22 26 26 28 16	150 [°] 10 14 14 16 18 186" 10	to 5 6 10 12 12 to 2 4	180" 1 21 23 28 30 30 16" Ir 24	Inside D 3 4 4-1/2 5 6-1/2 nside Di 3	iameter 1/2 5/8 3/4 1-1/4 1-3/8 ameter 1/2	1/2 3/4 1 1-3/8	8 9 12	3/4 1 1	1/4 3/8 1/2	2-7/8 2-7/8 3-3/8 4-3/8 2-3/8	30,000 30,000 38,000 38,000 38,000 30,000

*2 - 130 Ton shackle increase to 4-3/8". *3 - 150 Ton increase to 5-1/8".